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Abstract. In this article, our primary concern is the classical problem of minimizing globally a con- 
cave function over a compact polyhedron (Problem (P)). We present a new simplicial branch and 
bound approach, which combines triangulations of intersections of simplices with halfspaces arid 
ideas from outer approximation in such a way, that a class of finite algorithms for solving (P) results. 
For arbitrary compact convex feasible sets one obtains a not necessarily finite but convergent algo- 
rithm. Theoretical investigations include determination of the number of simplices in each applied 
triangulation step and bounds on the number of iterations in the resulting algorithms. Preliminary 
numerical results are given, and additional applications are sketched. 
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1. Introduction 

One of  the most interesting and fundamental global optimization problems is of  
the form 

min  f (x), subject to x E X,  (P)  

where X is a nonempty, compact polyhedral set (a polytope) in ]R n, and f : 
D -~ IR is a concave function on some open set D suitably containing the feasible 
domain X.  Problem (P)  is frequently called the concave minimization problem, 
and it is wel l -known that f may possess (possibly very many) local minima on X 
that are different from the global minimum we want to find. On the other hand, it 
is also wel l -known that there exists an extreme point of X which solves problem 
(P) ,  which is one of the key observations when it comes to the task to develop solu- 
tion methods for (P) .  Surveys on concave minimization including discussions of  
its various applications, related problems and existing solution methods are given, 
for instance, in Ref. [HoTu93], [HoPaTh95] and, in particular, in the very compre- 
hensive recent survey of  Benson in [Be95]. 

According to Benson ([Be95]), existing solution methods for solving problem 
(P)  or generalizations of  it can be classified by looking at their relationship to or 
their usage of  three fundamental algorithmic approaches: enumeration, successive 
approximation, and successive partitioning (branch and bound). Due to extreme 
point optimality, enumerative methods and (outer) approximation schemes yield 
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finite algorithms for problem (P) that are able to find exact extreme point optimal 
solutions. To guarantee this property, in worst case instances of (P), all extreme 
points of the feasible domain X are possibly investigated. 

On the other hand, the vast majority of proposed algorithms use branch and 
bound schemes in various forms. Although practically often quite efficient, almost 
all the branch and bound methods cannot guarantee finiteness (see, e.g. [HoTu93], 
[Be95]). To our knowledge, only comparatively few finite partitioning methods are 
known from the literature; the following enumeration is given without any claim 
for completeness. 

When f is separable, then the algorithm of Falk and Soland and a later variant 
by Soland are proved to be finite, using rectangular partitioning sets combined 
with lower bounds obtained via linear programming ([FaSo69], [So74]). 

To generate finitely convergent conical methods, Hamami and Jacobsen intro- 
duced a subclass of exhaustive cone splitting processes, the so called exhaustive 
nondegenerate (or END, for short) cone subdivision ([HaJa88]). This process has 
been used both in [HaJa88] and [HoTu93] (Chapter VII.I) to give conical parti- 
tioning schemes that find exact, extreme point optimal solutions for problem (P) 
under certain additional (mild) assumptions. 

At least partially inspired by ([So74]), Benson ([Be85]) proposed a simpli- 
cial branch and bound method using LP bounds and radial subdivisions, which 
does not require the separability of the objective function. As a follow-up, Ben- 
son and Sayin developed a variant of Bensons approach by incorporating a pro- 
cess called neighbor generation, which ensures both implementability and finite- 
ness ([BeSa94]). Finally, the so called exact simplicial algorithm due to Ban (cf. 
[TaBa85], [HoTu93], Chapter VII.3) achieves finite convergence by introducing the 
concept of so called "trivial" simplices and a special bisection method for "nontriv- 
ial" simplices. 

For a survey including almost all of these methods, we refer to [Be95]. In this 
article, we introduce a new subdivision procedure for simplicial partition sets: giv- 
en an n-simplex S and a linear inequality, we construct a simplicial partition of 
the part of S which satisfies the given inequality. The application of this subdivi- 
sion strategy in the branching step leads to a new finite partitioning method, which 
is closely related to the Ban-Algorithm. Moreover, it will allow us to investigate 
some interesting theoretical questions regarding bounds on the number of gener- 
ated partition sets and bounds on the number of iterations for branch and bound 
schemes using this method. 

The plan for this article is as follows: In Section 2, we give an algorithm for 
the subdivision step and hints for efficient implementations. After analyzing tl'/e 
possible number of new partition sets generated by this procedure, we will show, 
in Section 3, that no other method can improve on the proposed one in this respect. 
In Section 4, we will derive a class of finite algorithms for problem (P) which 
uses the new subdivision procedure, discuss the relation between these algorithms 
and Ban's method, and sketch some modifications for solving generalizations of 
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problem (P).  The article closes with a discussion of numerical examples in Section 
5. 

2. Subdivision of Simplices Relative ta a Cutting Plane 

Let S -- [v° , . . . ,  v n] be an n-simplex with vertex set V(S)  = { v ° , . . . ,  vn}, 
v i 6 ] R  n , 0 < i < n , a n d , f o r a E ] R  n , b E ] R , l e t { H = x E I R  n : a x - b = 0 }  
be a hyperplane generating the half-spaces 

H <- = { x E I R n : a x - b ~ _ O }  and H > - = { x E l R n : a x - b > _ O } .  

Define the corresponding open half-spaces 

H - : = H < \ H ,  H + : = H > \ H ,  

the vertex sets 

v -  (s) := v (s) n H - ,  

v + (s) := v (s) n H +, 
v = ( s )  := v(S)nH, 

and their cardinalities 

~ -  (s) := I V -  (s ) l ,  ~+ ( s ) : =  I v+  (s) l ,  n = (s) := IV = (S)l. 

DEFINITION 1. The hyperplane H is called irredundant for S, iff 

SAH <- # S # SAH >. 

Otherwise H is called redundant for S. 

LEMMA 2. H is irredundantfor S-'. ; -min{n  + ( S ) ~ n -  (S)} > 1. 

Proof. Let A n := {A 6 ]R n+l : A > 0, n ~ j = 0  )'J = 1.}. Then H is irredundant 
for S, iff we can find two points s 1, s 2 6 S satisfying s 1 6 H - ,  s 2 6 H +. The 
latter condition is equivalent to finding two vertices v 1, v 2 6 V (S) with v 1 6 
V -  (S) and v 2 6 V + (S), since s i = ~-].']=o AivJ for some A i 6 A n, i = 1, 2 [] 

DEFINITION 3. Let P C 11% n be a polytope satisfying intP # 0, and let I be a 
finite set of indices. A family ,9 := {Si : i 6 I} of n-simplices Si is said to be a 
simplicial partition of P ,  if 

P = Ui61 S i  and intSi O intSj = @ V i, j 6 I,  i ~ j. 

I f V  (Si) C V (P)  Vi 6 I,  then S is called a triangulation of P.  
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Now let S be an n-simplex and H a hyperplane irredundant for S. Assume in 
the following, without loss of generality, that n > 1. The main purpose of this 
section is to construct simplicial partitions of the n-polytopes 

P < : = S A H  <- and P>- := S A H >-, (1) 

respectively (the trivial case when H is redundant for S will also be considered). 
Let conv(X) denote the convex hull of a set X.  Since V(S)  = V - ( S )  U 

V + (S) U V = (S), we have S = conv(V-  (S) U V+(S)  U V=(S)) ,  where V -  (S) 
0 ~ V + (S). For any pair of vertices u 6 V -  (S) ,  v E V + (S), there exists a 
unique intersection point h = e n H of the edge e = [u, v] with the hyperplane H,  
given by 

h = h ( u , v , H ) = A u + ( 1 - A ) v ,  

where A = (av - b) / (av - au) 6 (0, 1). 
Let V (S, H)  := {h (u, v, H)  : u 6 V -  (S) ,  v E V + (S)}.  It is well-known 

that 

V(P  <-) = V - ( S )  U V = (S) U V (S,H) and (2a) 
V ( P  >-) = V + (S) O V = (S) U V ( S , H ) ,  (2b) 

for a proof see Ref. [HoTu93], Lemma II. 1. 
For any h := h (u, v, H)  E V(S ,  H),  the radial subdivision (cf., e.g., [HoTu93], 

[Tuy91]) of the simplex S at the point h yields the two n-simplices 

$1 = c o n v ( ( V ( S )  \ {u}) U{h}  ) 

and 

$2 = c o n v ( ( V ( S )  \ (v})  U {h} ),  

satisfying $1 U $2 = S, intS1 n intS2 = 0. By construction, we have 

n -  ( s l )  -- n -  ( s )  - 1 ,  n+  ( s l )  = n+  (S) 

n- ($2) = n- (S) , n + ($2) = n + (S) - 1 

and n = ($1) = n = ($2) = n = (S) + 1, since h E H. 

DEFINITION 4. The radial subdivision of S at h is called a bisection of S with 
respect to u, v and H,  or short a bisection with respect to h. 

The following Algor i thm 1 (A1) applies bisections on a given n-simplex S, 
until a given hyperplane H redundant or irredundant for S is redundant for every 
generated subsimplex: 
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Iteration O: Set/2 +- {S} ,  .M~ +-- (~, M + +- O, k +-- 1. 

Iteration k: 

k. 1: If/~ = 0, then stop. 

k.2: Choose Sk E 12 and set 12 +--/2 \ {Sk}. 

k.3: I f n  + (Sk) = 0, set -Ms  +-- -Ms tO {Sk} and go to Step k.6. 

k.4: If n -  (Sk) = 0, set .M~ +-- .M~ U {Sk} and go to Step k.6. 

k.5: Choose u E V -  (S) ,  v E V + (S) and bisect Sk with respect 
to h (u, v, H) ,  generating two n-sirnplices Skl, Sk2. 
Set/2 +- /2  tO {Sk~, Sk2}. 

k.6: Set k +-- k + 1 and go to Iteration k. 

PROPOSITION 5. Let S be a n-simplex, H be a hyperplane, n + := n + (S), 
n -  := n -  (S), n = := n = (S) be the cardinalities of  the sets V + (S) ,  V -  (S) ,  
V = (S) as defined above (with respect to H). Then we have: 
(i) Algorithm I terminates after a finite number, is, of  iterations. I f  K denotes the 

total number of n-simplices generated in M s U .h4 +, then is  = 2 K  + 1. 
(ii) M s  := M s tO .A4+ forms a simplicial partition of S. 

I f  n + > 0, then .hal+forms a triangulation of P >-. 

I f  n -  > 0, then A4~ forms a triangulation of P <-. 
I f n  + = 0, then .M S = (~ and .MS ----- "Ms = {S}.  

I f  n -  = O, then -Ms = 0 and -Ms = -M+ = {S}.  
[n++n-~ K + n + - - 1  . M s  (iii) K = I-MsI = ,  . +  j, := .M + = ( +n_ ) a n d K -  := = 

n++ n---l~ where we understand (~) = O for k > n. n+ J, 

Proof To show part (i), first note that (A1) changes the size g (/2) := ILl of the 
set/2 in every iteration step k < is  <_ o0 in exactly one of the following two ways: 

g (/2) +- g (/2) + 1, if k = 0 and in all iteration steps k _> 1 where Step k.5 
is executed, i.e., for all k satisfying n + (Sk) > 1 and n -  (Sk) _> 1 ( 'a size 
increasing step'). 

g (/2) +-- e (/2) - 1 in all iteration steps k > 1 where Step k.5 is not executed, i.e. 
for all k satisfying n + (Sk) = 0 or n -  (Sk) = 0 ( 'a size decreasing step'). 

Since the bisection operation used increases n = (S) by one in every iteration for 
the newly generated simplices Ski, Sk2, every nested sequence of partition sets 

must be finite, ending up in a finite set of simplices {,~i} with either n + (Si) = 0 
or n - ( S i )  = 0. We conclude that (A1) stops with/2 ----- 0 after a finite number of 
iterations, i.e. is  < cx~. Since K is the number of produced output n-simplices 
collected in M s ,  and hence equals the total number of size decreasing steps, we 
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must have is  = 2K + 1 (for every size decreasing step there is exactly one size 
increasing step; the final iteration stating/~ = 0 adds one). 

If n -  = 0 or n + = 0, the statements in (ii) are trivial. Otherwise, part (ii) is an 
obvious consequence of (i), Lemma 2 and the fact that every bisection process in 
Step k.5 generates a simplicial partition {Ski, Sk~ } of Sk. It follows by induction 
that/2 U .Ms forms a simplicial partition of S in every iteration step k. In Step 
is. 1 we have/~ = 0, and (ii) holds because of Lemma 2 and steps k.3, k.4 of (A1). 
Note that, by Step k.5 and (2a), (2b), every simplex S in .M+ or .Ms satisfies 
V(5;) C_ V(P>-) or V(S) C_ V ( P < ) ,  respectively, so that the simplicial partitions 
constructed in .M+ and .Ms are in fact triangulations of P>  and P<.  

We show part (iii) using induction on n + + n - :  

(1) For n + + n -  = 1, assume (o0: n + = 1, n -  = 0. We have S C_ H >, and H 
is a supporting hyperplane for S. (A1) executes Step 1.4, setting .A4 + = {S}, 
and stops in Step 2.1 with/~ = 0 = .MS after three iterations, with k = 2. We 
obtain 

1+0 K + 1+0-1 1+0-1 
K = 1 = ( 1 ) ,  = 1 = (  0 ), K - = 0 = (  1 )" 

For case (/3): n + = 0, n -  = 1 one concludes the result by analogous argu- 
ments. 

(2) Now let us assume that (iii) holds for n + + n -  = k, k _> 1. We have to 
show that (iii) holds for every simplex S with n + + n -  = k + 1. Assume (~): 
n + = k + 1, n -  = 0: We stop after three iterations with (iii), see (1)(o0. 
Assume (/3): n -  = k + 1, n + = 0: We stop after three iterations with (iii), see 

(1)(/3). 
Now assume (7): n+ -> 1, n -  >_ 1: Step 1.5 of(A1) bisects S1 = S into two 
subs impl ices  $11~ S12 satisfying n + (SIj) + n -  (Slj) = k, j E {1, 2}, and 

n +  (~11) = n +  n +  ($12) = n + - 1 

n -  ($11) = n -  - 1 n -  (S12) = Tg- 

After this initial step, (A1) executes exactly the steps as if one would apply it 
separately on $1, and $12, but in an order dependent on the selections made in 
Step k.2, k > 2. Using the induction hypothesis, we see that (A1) produces 

k--1 (,~+) i n . M s ,  (n - - i )  subsimplices generated from $11 in .M+, k-1 

k-1  
(n+-l) in . M s ,  ( n - )  subsimplices generated from $12 in .M+, k-1 

and summing up using k = n + + n -  - 1 we see that 
~. k -1  K +  (nk---li) "}- ( n - )  = ( g )  = (n++nn---1) 

k - 1  k--1 k [n++n - -1~  
K -  = ( . + - 1 )  + ( . + )  = ( .+ )  = . +  , 

[ n + + n - - l "  I [n++n - -1"~ ( n + + n - ~  K = K + + K -  = ~ n + - I  1 + ~  n+ ) = ~  n+ ] 

This completes the proof of Proposition 5. [] 
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Figure 1. Graph G of subdivision 

REMARKS: 
(a) The subdivision process of Algorithm 1 can be visualized b~_~irected graph 

G as shown in Figure 1. A column in G consists of nodes I i : j I representing 

the k + 1 possible configurations of i >__ 0 vertices lying in V + and j > 0 
vertices lying in V - ,  if the sum n + + n -  is fixed to k _> 1. The leaves in G 
are nodes with either i = 0 or j = 0, representing a simp_~ex S with S c H -< 
or S C H ->, respectively. From every node N = l i : j I E C that is not a 
leaf, there are exactly two directed edges emanating from N,  representing the 
bisection process. Starting from such a node, one finds the simplices gener- 
ated by Algorithm 1 applied to a corresponding simplex S with n + (S) = i, 
n - ( S )  = j by visiting all leaves in G reachable from N. 

(b) We can prescribe any order of selection in Step k.2 of Algorithm 1, for exam- 
ple by choosing a specific data structure for the implementation of the set E. 
Organizing E as a stack, i.e. retrieving elements of E in a last-in, first-out 
order, corresponds to a Depth First Search (DFS) leaf-visiting process in G. 

(c) For our applications, it seems worthwhile to note that Algorithm 1 is only con- 
ceptual. Actual implementations can be greatly enhanced regarding storage 
requirements and runtime efficiency, for example by avoiding the (explicit) 
usage of the sets E, A4 +, .M~ and by using specialized storage schemes in 
Step k.5. 
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Let us clarify the last idea by giving an outline of a recursive variant of Algo- 
rithm 1 developed for the following purpose: given a simplex S and a hyperplane 
H irredundant for S, construct a simplicial partition of S fq H <. We will represent 
simplices by certain associated integral index sets. To be more specific, let 

S = [ u l , . . . , u n - ( S ) , v l , . . . , v n + ( S ) , w l , . . . w n = ( S ) ] ,  

where u i 6 V -  ( S), vJ 6 V + ( S), w k 6 V = (S). We encode this initial simplex 
S by the triple ts  := (k, m, I)  where k = n - ( S ) ,  m = n+(S),  1 = 0. In general, 
the initially empty set 

I =  { ( i l , j l ) , . . . ,  (ilII,JllI) } 

consists of index pairs referencing elements of the set 

Hs := {hij  :=  h(ui, vJ, H) : 1 < i < u - ( S ) ,  1 <_j < n+(S)}  

of intersection points hij. Bisecting any given simplex S represented by a triple 
(k, m, I)  with respect to hkm into $1, $2 leads to the triple representations 

$1 ---- (k - 1,m, I1) , $2 = (k ,m  - 1,12) 

where I1 -- I2 -- I U {(k, m)}. On the other hand, given a triple representation 
t~" := (il, i2, J )  one can reconstruct the associated simplex S -- S (il, i2, J)  as 

g = [ul,  - ' ' , ~z i l , v l ,  ' ' ' , v i 2 , w l ,  " ' 'wn=(S) ,h j l j2  : (j l ,  j 2 ) E  J]  . 

procedure S u b d i v i d e ( k ,  m , / ,  .Ms)  
begin 

ifm = 0 

M s  +- M s  US(k,m,X) ; 
else 

S u b d i v i d e ( k ,  m -- 1, / U { ( k , m ) } ,  .A4s) ; 
if k >  1 

S u b d i v i d e ( k -  1, m, I U  { (k ,m)} ,  M s )  ; 
end 

Figure 2. The Procedure Subdivide(.) 

Using this notation, the recursive procedure S u b d i v i d e ( . )  shown in Figure 2 
can be used to produce the set A4 s by a top level call with initial parameters k = 
n -  (S), m = n + (S), I = @ and M s = 0. Used in such a manner, S u b d i v i d e ( . )  
visits all leaves of the corresponding graph G representing simplices S 6 .h//~ in a 
DFS-order; by further usage of the index encoding scheme, it is relatively easy to 
derive a subdivision algorithm which widely avoids a multiple storage of the vertex 
coordinates. 
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Table I. Calling sequence for n -  (S) = 2 = n+(S) 

73 

i ~i ki mi li Si ,£4 s 

1 2 2 0 -- 0 

2 2 2 1 { ( 2 , 2 ) }  - -  
3 3 2 0 {(2, 2),  (2, 1)} [ul,uZ,h22,h21] {Sa} 
4 3 1 1 { (2 ,2 ) , (2 ,1 )}  - -  {Sa} 
5 4 1 0 {(2, 2),  (2, 1), (1, 1)} [ul,h22,h21,hxx] {$3, Ss} 
6 2 1 2 {(2, 2)} - -  {$3,$5} 
7 3 1 1 {(2, 2),  (1,2)} - -  {Sa, $5} 
8 4 1 0 { (2 ,  2) , (1, 2) , ( 1 , 1 ) }  

EXAMPLE 6. Let us illustrate the manner of working of Subdivide(.). Assume 
that S is a 3-simplex, and assume that H divides the vertex set of .S into V -  (S) = 
{u I , u 2 } and V + (S) = {v 1 , v2}. Table I shows the calling sequence for the pro- 
cedure S u b d i v i d e ( . ) .  Its first column gives the number i of the current call. In 
each row (call) i, gi denotes the current call level, which equals the current depth 
of the associated call tree, and ki, mi, Ii are the actual parameters. The Si column 
gives the simplex Si := S (ki, mi,  I i ) ,  if one is generated in the i-th call, and the 
last column lists the state of the output set .A4 S just before call number i + 1. Note 
at this point that ki, mi,  and li are given by value to S u b d i v i d e ( . ) ,  while .A/[~ 
is given by reference. 

The calling sequence in Table I applies for any 3-simplex S and hyperplane H 
satisfying n - ( S )  = 2 = n + (S), and it applies for any higher dimensional exam- 
ple satisfying this condition: just add to every generated simplex in {$3, $5, Ss} 
the vertex set V = (S) .  Therefore, at least in principle, it is even possible to pre- 
compute a database containing the corresponding index sets for each possible pair 
( n - ( S ) ,  n + (S)) once and use it to generate from these indices the partition sets in 
A4~. 

3. Subdivisions with Minimal Cardinality 

In this section, we give an answer to the natural question of what is the minimal 
number of simplices in a simplicial partition or triangulation of the polytope P<  = 
S f q H  < introduced in (1). It is obvious that we can restrict our considerations to the 
(full-dimensional) case when n - ( S )  > 1: otherwise, P--- = c o n v  (V = (S)) holds, 
so that P-< is a simplicial face of S if V = (S) # O, and P-< = O, if V = (S) = 0. 
Also, the case of P >  is completely symmetrical, so that there is no need to discuss 
it seperately. 

We will prove that the procedures developed in Section 2 generate minimal 
partitions (and triangulations) in the sense described above. For this purpose, we 
will transform P-< into a "standard"-polytope E C_ 11% n, which is projectively 
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equivalent (see, e.g. [Gr67]) to P-<. For the sake of completeness, let us recall the 
definition and put together some basic properties of a projective transformation, 
tailored to our need (and each with our own direct verification, given in Appendix 
A, starting on page 26). 

DEFINITION 7. Let f : ]R n --+ IR n be a transformation defined by 

A x + a  
f (x) . -  cT x + 7 ' (3 )  

where A E ]R n×n, a, c E ]R n and 7 E ]R, with at least one of c and "y being 
different from 0. Then f is called a projective transformation from ]R n into IR n, 

defined on ]R n \ N ( f ) ,  where N ( f )  := {x E ]Rn: cTx + 7 = 0}. For X C ]R n, 
f is said to be permissible for X i f X  M N ( f )  = 0. If the matrix 

(Z o) 
M f  : - -  cT 

is regular, then f is called nonsingular. 

(4) 

LEMMA 8. Let X C ]R n and f : ]R n --~ IR n be a nonsingular projective trans- 
formation permissible for X .  Let Y := f (X) := {y E ]Rn: y = f (x) ,  x E X} 
be the image o f  X under f .  Then f is invertible on X with inverse 9 : Y --4 X ,  
which is a nonsingular projective transformation permissible for  Y .  Moreover, i f  

B y + b  
f - 1  (y) = g (y) .-- dTy + ~ ' 

where f is given by (3), and ~7 = f (~) for  some ~ E X ,  then 

dTzl q - 5 =  (cT~ q-~[) -1 . 

LEMMA 9. Let P C IR n be a polytope with vertex set 

V ( P )  C_ X := { x l , . . . , x  k} C P, 

ax+a be a projective where x i ¢ x j for  i ¢ j .  Let f : IR n --4 JR n, f (x) := c x-rT-~+7 

transformation permissible for  X satisfying cTx i + 7 > O, 1 < i < k, and define 
Y := f ( X ) : =  { f ( x l ) , . . . ,  f (xk)}  =: { y a , . . . ,  yk}. Then the image 

P '  := f (P)  := {y E ]Rn: y = f ( x ) , x  E P} 

of  P under f satisfies P~ = conv(Y). 

LEMMA 10. In the situation o f  Lemma 9, assume that f is nonsingular. Then we 
have; 
(a) I f V ( P )  = X ,  then V(P ' )  = Y,  and, i f V ( P ' )  = Y, then V ( P )  = X .  
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(b) I f  Sd is a d-simplex contained in P, then f ( Sd) is a d-simplex contained in P'. 
Conversely, i f  Std is a d-simplex contained in P', then f -1 ( S~d) is a d-simplex 
contained in P. 

(c) I f  7) := {Si : i E I}  is a simplicial partition o f  P, then 7)' := f(7)) := 
( f  ( S) : ~ E T)) is a simplicial partition o f  P '  with the same cardinality. Con- 
versely, if  7)' := {S~: i E I '}  is a simplicial partition o f  P', then 7) := 
f -1(7) , )  := { f - 1  (S ' ) :  S'  E 7)'} is a simplicial partition o f  P with the same 
cardinality. 

Using these results, we are now able to projectively transform P <  into an n -  
polytope E C_ IR n, whose vertex set is suitably contained in V (C,~), where C,~ 
denotes the unit cube in ]R n. More precisely, using the notation of Section 2, we 
obtain: 

PROPOSITION 11. Consider a given pair (S, H<), and let P< := S fq H <-. Let 

k : = n - ( S ) - l > 0 ,  l : = n  + (S) > 0  a n d n  =(S)  > 0 .  (5) 

Then there exists a nonsingular projective transformation f : ]R n --+ ]R n permis- 
sible for  P< with 

f(P<-) = c o n v  ({0, e l , . . . ,  en}  U {e i -Jr- ej : i E I ,  j E J ) )  =:  Ek,t,  (6) 

where e l , .  • • ~ en denote the unit vectors in ]Rn~ 

I : = { i : l < i < k } ,  J : = { j : k + l < _ j < _ k + l }  

and (ei + ej : i e I,  j E J}  = O if I = O (i.e. k = O) or J = O (i.e. l = 0). 
Moreover, this representation o f  Ek,l is unshrinkable, i.e., 

V(Ek , l )  = {0, e l , . . . , e , }  U {ei + ej : i E I,  j E J} .  (7) 

Proof. Let S = [ v ° , . . . , v  n] and H < = {x E ]R n : h (x) = aTx -- b < 0}. 
Assume an ordering of V (S) satisfying 

v - ( s )  = {v° , . . . , vk) ,  
y + ( s )  = 
V = ( S )  = (vk+lq-1 . . . , v  n )  . 

Here we understand V+(S)  = O, i f / =  O, V=(S)  = 0, if k + l  = n, i.e. n=(S)  = 
0. Note that V -  (S) ¢ 0 by (5). Then the vertex set of P <  is given by 

V ( P  <-) = V -  (S) U V = (S) U {hij : i E I U (O) , j E J}  , 

where hij := v i + )~ij (vJ - v i) for some ),ij E (0 ,1) ,  i E I U {0}, j E J ,  if 
J ¢ 0. Let hj := h (vJ), 0 < j < n. Since h (hlj) = 0, the scalars )~ij are given 
by the equation hi + )~ij (hi - hi) = 0, i.e., 

hi 
)~ij --  hi - hj for i E I U {0}, j E J, (8) 
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satisfying Aij E (0, 1), since hi < 0 and hj > 0. Define 

V : =  (vZ-vO, . . . , v '~ -vO)  EiRn×n, (9) 

(~o _%. -hk+l --hk+, 1, 1) E IR  "×n (10) D := diag ," " " ' h o  ' h o  ~ " " " ' h o  ' " " " ' 

"-- ( 2 hl~-ho -1 , .  -1, 0,. ,0) E IRk+l+m, (11) b T . _  hi o . . . ,  ho ~ "'~ "" 

where, in (11), m := n = (S) ,  i.e. k + l + m = n. In (10) and (11), we understand 
that the first, second or third group of columns vanishes if k = 0, l = 0 or m = 0, 
respectively. Consider the projective transformation ] : ]R '~ --+ ]R n given by 

DW -1 (X -- V O) (12) 
f ( x ) : =  bTV_ x ( x _ v  °) + l 

(a) f is nonsingular, since the corresponding matrix M I can be written as the 
product of two nonsingular matrices: 

- D V - %  ° D V -1 -V-Xv  ° 
M y = (  DV-1 bTV_lvO ) = ( bT O1) " ( 0 T ) bTv -1 1 -  1 " 

(b) f is permissible for P-<. To see this, let g (x) := bTv -1 (x - v °) + 1, b T ~- 

( b l , . . . ,  bn) and bo := 0. Then, for the vertices of P -<, we have, by (9), (11), 
hi < 0 V i  C {O,. . . ,k} andAij C (0,1): 

1 > 0  f o r k + l + l < i < n  
g (v i) = b, + 1 =  (13a) 

hJ  ho > O i f / E { 0 , . . . , k }  

e(hij) = e ( v  ° + (1-),ij)(d-v °) + 

= (1 - Aij) bi + Aijbj + 1 

= (1 - Aij)(bi + 1) 

hi 
= (1 - ,Xij) h0 

(13b) 

(13c) 

(13d) 

for (i,j) E ( I U  {0}) x J, if J ¢ O 
P---. (Note that (13c) follows from (13b) since 

> 0 ,  
Therefore, g(x) > 0 Vx E 
bj = - 1  f o r j  E J by (11)). 

By (a) and (b), the requirements of Lemmas 9 and 10 are fulfilled, so that f (P-<) 
is the polytope with vertex set 

V(f(P<)) = f(V(P<-)). 

Using (8)-(12), (13a), (13d), and the notation D = ( d l , . . .  ,dn), do := 0 E IR a, 
we see that f(V(P<)) is given by 

vi di I ~(v-~)0= 0 i f i = 0  

( )- l 
S 

~ e~ ei i f i E I ,  I ¢  



SUBDIVISION OF SIMPLICES RELATIVE TO A CUTTING PLANE 77 

f (vi ) di _ ei 
- e(v  i) 1 - e i ,  f o r k + l + l < i < n  

f (hij) = f (v ° + (1 - Aij)(v i - v  O) + )~ij(v j - v ° ) )  

= (1  - -  ,~ij) di + )~ijdj (14a) 

= - -  ~ d i  + h_______L_i hi - hj . ho .  -h__..~jej (14b) 
i hi -- hj - h i  hi ho 

= / 0 + e j =  ej i f i = 0 ,  j E J ,  J ~ O  

[ ho_b_ hi hoei + eJ ei + ej i f i • I ,  j • J , I ~ O ~ J  

Here, (14a) follows from (12), (13d), while (14b) follows from (8), (10). This com- 
pletes the proof of Proposition 1 1. [] 

To show our main result concerning the minimality of the triangulation of P-< 
developed in Section 2, let us now consider simplicial partitions of Ek,t (see also 
Ref. [Ha91], Lemma 2): 

PROPOSITION 12. Every simplicial partition 79 := { S / : / E  I} of Ek,t satisfying 

V (Si) C_ V (Ek,t) Vi • I (15) 

has the cardinatity c := n! . vol (Ek,l), where vol (K) denotes the volume of  an 
n-dimensional polytope K C ]R n. Moreover, if  79' is a simplicial partition of  Ek,l 
for which (15) does not hold, then 

179'1 > c. (16) 

Proof. To show the first assertion, let S be an n-simplex contained in Ek,t sat- 
isfying V (S) c_ V (Ek,l). If S = [ v ° , . . . , v n ] ,  V := ( v ° , . . . , v  n) and lk  := 
( 1 , . . . ,  1) E ]R k, then it is well-known that 

n, dot( )1 
l n + l  " 

We aim to show that, for every possible choice of S, we have 

(17) 

For this, consider first the case n = 2: we have V (S) C {0, ex, e2, el -4- e2} -- 
V (C2), where C2 is the unit square in lit 2. Since every triangle having its vertices 
in V (C2) has area ½, the assertion follows. 
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For n _> 3, assume first that 0 E V (S). Then 

laot( l n + l ) l  : leer ( ~ V' 

since W is a regular submatrix of V, and V is totally unimodular (cf., e.g., Ref. 
[PaSt82], Theorem 13.3). If 0 ~ V (S), we must have ei E V (S) for at least one 
i E {1 , . . . ,  n}. To see this, assume the contrary. Then 

V ( S )  C _ { e i + e j : i C I ,  j e J } _ C { x E l R " :  1 Tx = 2}, 

and hence the vertices of S would be affinely dependent, contradicting the assump- 
tion dim(S) = n. So assume without loss of generality v ° = el. Let V' := 
( v l , . . . ,  vn) ,  so that 

ei V' 
I n + l  

and denote by Vr' := ( V~i ) the matrix obtained by deleting the r-th row of V'. 

We consider two cases: 

(a) If  vii = 0 for a l l j  satisfying 1 < j < n, then, with On := (0, . . .  ,0) E IRr': 

l n ) l :  det ei V/[0n : ] d e t ( V / ' ) ]  
In " 

1 In 
some k E {1 , . . . ,  n} , then v k = ei --k ej for some j E J, since 

denote the j - th  row of W. Subtracting column k = v °. Let vj 
(b) If v~ = 1 for 

otherwise v k 
from column 0 gives 

1 In  = det Vj~2 

0 In 

) =Jdet( )J 
In 

In both cases, we see that (17) follows by induction, so that vol (S) = 1 O" 

Now let 79 := {Si : i E I} be a simplicial partition of Ek,l satisfying (15). 
1 Vi E I we conclude Then F, ieI vol (Si) = vol (Ek,l) , and from vol (Si) = 

that 1I I = n! • vol (Ek,t) = e, i.e., the first assertion of Proposition 12. 

Regarding the second assertion, consider an n-simplex S = [v° , . . . ,  v n] with 
V ( S )  C Eb,t, and assume that p(S)  := [{vi: v i ¢ V (Ek,t)}l > 0. Assume 
without loss of generality v ° ~ V (Ek,t). Then the function q~s : ]Rn --+ lit defined 
by 

X V 1 ' ' .  V r~ 

~S(X) := I¢s(x)l := ldet ( 1  1 1 ) [  
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is convex, since ¢ s ( x )  is affine. Therefore max  { ~ s ( x )  : x E Ek,t} = ~ s ( x  °) for 
some x ° E V (Ek,t), so that vol (S) < vol (S'),  where S' := [x ° , v l , . . . ,  v~].  
Hence for any simplex S c_ Ek,t with p (S) > 0 we can find a simplex S t C_ E/~,t 
satisfying p (S t) = p (S) - 1 and vol (S) < vol (St). Using induction we see that 
there is a simplex S 't with V (S") C V (Ek,l) and vol (S) < vol (S 't) = ~ .  There- 
fore, for any simplicial partition 79 t of Ek,l we have vol (Ek,t) = ~ s e v ,  vol (S) < 
liYl, which is equivalent to (16). [] 

Now it becomes easy to state the main result of this section: 

THEOREM 13. Let :D = { Si : i E I}  be a simplicial partition of P <- = S n H <-. 
I f V  (Si) c V (P<--) Vi E I, then 

{n+(S)+n-(S)-l~ ( ) III -- ~ ~+(s) j =:  d S , H  <- --: d, 

and d is the minimal cardinality of any arbitrary simplicial partition of P <. In par- 
ticular, the triangulation generated by Algorithm 1 (or the procedure S u b d ± v ±  de )  
is minimal in this sense. 

Proof. The partition 7 9 of P-< developed in Section 2 uses d n-simplices, and 
satisfies V (S) C V (P<)  VS E 79. The Theorem follows immediately by applying 
Lemma 10 (c), Proposition 1 1 and Proposition 12, taking notice of the fact that the 
projective transformation used in Proposition 1 1 maps vertices of P <  onto vertices 
of Ek,1. [] 

4. Application to Concave Minimization 

In this section, based on the subdivision procedure of Section 2, a finite simplicial 
branch and bound algorithm is derived for the problem 

~ i ~  f ( x ) ,  (18) 

where P C lit n is a full-dimensional polytope and f : D --+ IR is concave on a 
suitable set D C IR n containing P .  

4.1.  B A S I C  O P E R A T I O N S  

4.1.1. Methods to Compute an Initial Simplex 

The algorithm starts with a simplicial approximation S D P of the polytope P .  
Assume that P is given in inequality representation 

P = {x  E lRn: aTx <_ bi, i E I}  , (19) 
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where I is a finite index set, and ai C IR n, bi E IR, i E I. Let u be a vertex of P.  
Then there exists an index set I(u) = {i E I :  a~u = bi} such that II(u)l = n, 
and the vectors ai, i Elr, are linearly independent. We propose to choose 

S =- {x  : aT:r, <_ bi, i E I (u) ,  dTx <_ ~}, (20) 

where d = _2 ~ ai and a = max{dTx : x E P} (cf., e.g., [HoTu93] and n 
ieI(u) 

[HoTh88]). If the vertex u is nondegenerate, then the set I(u) is unique; a detailed 
discussion of the degenerate case is given in [HoTu93], Chapter 3. Geometrically, 
the simplex S in (20) is the intersection of a polyhedral cone K with vertex u and 
n edges with the hyperplane {x : d r x  = o~}. The vertex set V(S)  of S is easily 
determined. 

If P C IR~, a simpler but usually much less tight initial simplex is given by 

S = {x e ]R~_: eTx </~}, (21) 

where e T = ( 1 , . . . ,  1) E IR n, and fl = max{eTx  : x E P} .  
Finally, if the inequality representation of P includes upper and lower bounds 

1 _< x <_ u (i.e. we have a rectangle R containing P) ,  then it is always possible 
to triangulate R into n! simplices in the standard way (cf. [Tod76]). In fact, n! is 
the maximum number of simplices in any triangulation of R, and more efficient 
triangulation methods are known in the literature (cf., e.g. [Ha91] and references 
therein), especially for small dimensions n _< 6 (cf. [Hu93], [HuAn93]). Starting 
with a triangulation of R might be useful when n is small or if V (R) contains many 
feasible vertices, see the following discussion of the bounding procedures. Notice 
that each simplicial branch-and-bound method can be modified in an obvious way 
to start with a finite union Uir=l Si of simplices satisfying P E Uir=l Si, int Sk r-1 
i n t S j = O  Vk, j E { 1 , . . . , r } ,  k ¢ j .  

4.1.2. Lower Bounds 

Let S = Iv° , . . . ,  v n] be an n-simplex, P a polytope given in the form (19) and 
let f : S > lit be concave on S. Then to calculate a lower bound for f*(S)  := 
m i n { f ( x )  : x E S M P } ,  we propose to compute either 

#I (S)  := rain f ( v  j)  (22) 
0<jSn 

or, at the expense of solving a linear program, 

#2(S) := min E2=o)~j / (v  ~) 
~e~ ~+i (23) 

s.t. ,~ }2_ O, eTA = 1, a T v A  <_ bi, i E Is  

where e := ( 1 , . . . ,  1) T E IR '~+i, V := ( v ° , . . . ,  v n) E IR '~x('~+l), 

Is  := {i E I :  S j  e { 0 , . . . , n }  : aTv j > bi} , (24) 

and p2(S) = cx~ if (23) has no feasible solution (cf. also [FaHo76], [Ho76]). 
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PROPOSITION 14. Both #I(S) and #2(S) as defined above are valid lower 
bounds for f*(S),  l f  S is an n-simplex containing S, then #j(S)  ~ #j (S) ,  j = 
1, 2. Moreover, #2(S) _> ~I (S)  and, if Is = ~, then/Zl(S ) =/~2(S) = f*(S). 

Proof. From the theory of convex envelopes (cf., e.g., [HoTu93] and references 
there), we know that the best convex function qos(x) underestimating f ( x )  on S is 
given by the unique affine function satisfying 

~s(vJ)  = y(vJ), 0 < j < n .  

Using barycentric coordinates )~ E IR n+l,  i.e. 

x E S z, ,~ x = V,~, )~ >_ O, eT )~ = l, 

we see that, since I = IS + {i E I :  a Tx <_ b, V x E S}  " 

f*(S)  > min{qas(x) : x  E S M P }  (25a) 

min { n } = ~-~j=0 )~jf(vj) : )~ > 0, eT,k = 1, aTv)~ < bi, i E I 
AEIRn+I  - -  _ _  

= ~2(s) 
> min { n } E j = o  ~jl(v~) : x > o, e r a  = 1 (25b) 
- -  AE]Rn.]_ 1 

= min  f ( v  j) 
O<_j <_n 

= # I ( S )  

Now let S C_ S. Then, by concavity of f (x ) ,  we have 

#1(S) = m i n f ( V ( S ) )  = m i n f ( S )  > m i n f ( S )  = min  f ( V ( S ) )  = #1(S),. 

and 

#2(S) = min{cps(x) : x E S fq P}  > min{qo~(x) : x E S fq P}  = #2(S),  

since qos(x) >> qo~(x) Vx  E S by definition of the convex envelope and S VI P C 

M P.  Finally, if I s  = 0, then S c P and equality holds in (25a), (25b) because 
of min  f (S) = min  qos (S). [] 

4.1.3. Upper Bounds 

For any simplex S generated in the course of solving problem (18), let Q(S)  := 
V (S) fq P be the set of feasible vertices of S. If (23) is used for lower bounding, then 
add to Q(S) the feasible optimal solution obtained when calculating #2 (S) < c~. 
Obviously, the (possibly infinite) number 7(S)  := rain { f ( x ) : x  E Q(S)} yields 
an upper bound for f*(S),  and 

7 := ~nel~ 7(S) ,  (26) 

taken over the set S of all generated simplices, is an upper bound for min  f (P) .  
Note that, if V(S)  C P, then f*(S)  = 7 (S) by concavity of f (x) .  
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DEFINITION 15. Used in conjunction with 7(S) as defined above, a lower bound- 
ing rule # (S) is called exact (for feasible simplices), iff # (S) = f*(S) = "y (S) 
holds whenever V (S) C_ P.  

It is obvious from Proposition 14, that both #I(S)  and #2(S) are exact in this 
sense. Moreover, every reasonable lower bounding rule #(S)  for problem (18) will 
be exact, at least if one combines it for example with #1(S) by using/2(S) := 
max {#i (S), #(S)} instead of #(S).  Therefore, we will assume in the following 
that #( S) denotes an exact lower bounding rule. 

4.1.4. Subdivision of Simplices, Deletion by Infeasibility 

Let S = [v° , . . . ,  v n] be an n-simplex with lower bound #(S)  < 7, where 7 is 
the upper bound defined in (26). Then #(S)  < 7(S) and Is # O, since Is = 0 
would imply S c_ P and therefore #(S)  = f*(S)  = 7(S) >_ 7. Choose i E Is 
and subdivide S with respect to the cutting plane Hi := {x E IR n : aTx -- bi = O} 
into the n-simplices contained in the set A4~ = .M-~(Hi), using, for example, 
the procedure S u b d i v i d e ( )  developed in Section 2. Let M S = {S1 , . . . ,  St}, 
where g = K -  is given by Proposition (5)(iii). Then we propose to replace S by 
{S1, • • •, St}. Note that, if for some io E Is,  one has V(S) C_ H >, the correspond- 

ing set .Ads is empty. In this case, by Proposition (5)(iii), we have g = 0, and we 
propose to eliminate S from the set of simplices under consideration without any 
further subdivision. Applying this (implicit) deletion rule, one eliminates partition 
sets S with S M P C_ OP, i.e. one cuts off at most boundary points of P.  

4.2. THE ALGORITHM 

Here is the simplicial algorithm for solving Problem (18). It uses the basic opera- 
tions defined in Section 4.1: 

Algorithm 2 (A2): 

Iteration 0: 

Determine an initial n-simplex So _~ P ,  the lower bound #(So) and the 
set Q(So). Set Q0 +-- Q(S0), 70 +-- min{f (x )  : x  E Q0} and choose 
Y0 E Q0 satisfying f(yo) = 70, if Q0 # 0. Set 790 +-- {So}, #0 +-- #(S0), 
k +-- 1. 

Iteration k: 

k . l :  If 7k-1 = #k- l ,  then stop. (Yk-1 is an optimal solution to Problem (18) 
with optimal function value 7k-1) 

k.2: Select Sk E ~/gk-1 satisfying #(Sk) = #k-1. 
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k.3: We have Isk ~ 0, since #(Sk) < 7k-1. Choose ik E Isk and compute the 
set .Msk with respect to the cutting plane Him (as described in Section 

4.1.4). Let e := IMs l, -- Compute the lower 
bounds #(Sk~) for 1 < j _< L 

k.4: Set 

Qk +-- QI¢-I U U~=l  Q(Sk~), 

7k +-- m i n { f ( x )  : x E Qk}, 

#4 +-- min {#(S) : S E 1)k}. 

If'-/k < oo, choose Yk E Qk satisfying f(Yk) = "/k. 

k.5: Set T'4 +-- P4 \ {S e 9°4 : # (S )  >_ "),~}. If~Ok = 0, set#k +-- ")'k. 

k.6: Set k +-- k + 1 and go to Iteration k. 

4.3. CONVERGENCE 

The following Lemma shows that the implicit deletion rule described in Section 
4.1.4 does not cut off any feasible point from the current partition 79k which is 
better than the current best known solution Yk. 

LEMMA 16. Let, in Problem (18), f be continuous on P. Then, in any iteration 
K >_ 0 of Algorithm 2, we have 

{x E P : f (x )  < TK} C PK • 

Proof. For K = 0 we have P C_ So E 7~o. Assume to the contrary, that K > 1, 
x E P, x ~ S V S  E "PK and f (x )  < "~K. By continuity o f f  and d i m P  = n, 
we can find a sequence oo {x~,)~,=l with x~, E in tP,  f (xv)  < 7K and lira x~, = x. 

We conclude that, for every v, no simplex S with xv E S E T'k is deleted in 
any iteration k < K. Deletion of such a simplex cannot occur neither in Step k.3, 
since the rule described in Section 4.1.4 cuts off at most boundary points of P ,  
nor in Step k.5, since #(S)  < f(x~) < 7K < 7k (note that the sequence {'rk} is 
nonincreasing by construction). Therefore, for every x~ we can find a simplex S~ E 
~ K  containing x~,. Since 17 KI < ~ ,  there is an S E 79K with {Xq} C S, where 
{xq} is a suitable infinite subsequence of {xv}. It follows that x = lim Xq E S E 

q---~oo 
79K, since S is closed. [] 

In the following, let, for x E lit, Ix] denote the greatest integer less than or 
equal to x. 
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THEOREM 17. In Problem (18), let f be continuous on 19, where the polytope P 
is given in the form (19) with [I[ = m. Then Algorithm 2 stops at iteration K + 1 
yielding an exact solution YI¢ with #K = 7I,: = f (YK). An upper bound for the 
number of iterations is given by 

K < M"~-I (27) - -  M--1 

the total number N of simplices generated satisfies 

N < Mm+l-1 (28) 
- -  M--1 

and the maximal size of any partition Pk is bounded by 

I 'kl ___ Mm-~ + M - 1, (29) 

where M---  

Proof A directed graph G can be associated with Algorithm 2 in a natural way. 
The nodes of G consist of So and all partition elements generated by the procedure. 
Two nodes Si, Sj are connected by an arc (i,j) if and only if Sj is obtained by a 
direct partition of Si in some Step k.3, i.e., Sj E A4si(Hik). Obviously, in terms 
of graph theory, G is a rooted tree with root So. A path in G corresponds to a 
decreasing sequence {Skq } of successively refined partition sets. For any such path 
in G, the corresponding sequence {lkq } := (ISkq } satisfies 

Ikq+l c_Iaq and Ikq+l[ < / k q [ - - 1 ,  (30)  

since Skq+l G .h4~q (Hikq) by the rules proposed in Section 4.1.4. 

Assume that there is an infinite sequence {Skq}, and let p denote the path in 
G associated with it. Since, with Sa0 = So we have [Ik0[ --< [I[ = m, it follows 
from (30) that Ikv = ~ for some v <_ m. By (26) and since # is exact, we have 
tz(Sk~ ) = f* (Sk~)  = 7 ( S k ~  ) >__ 7k ,  where k is the iteration where Sk~ is generated. 
Therefore, Sk~ gets deleted in Step k.5 of Algorithm 2, and p has a length g(p) _< 
m, a contradiction. Hence every path p in G satisfies g(p) _< m. 

From Proposition (5)(iii), we know that, for any node S E G, the number of 
immediate descendants is bounded by 

K - ( S )  = {n+(S)+n-(S)-l ' l  _ n n+(S) ' < ([~J) = M; (31) 

hence the total number d(So) of descendants from So satisfies d(So) <_ ~m_ 1 M i, 
which demonstrates (28). 

On the other hand, there is a one to one correspondence between the iteration 
steps in Algorithm 2 and the nodes in G having a direct descendant, and therefore 
after K <_ ~m.~l M i iteration steps we have PK = O in Step K.5, i.e. we stop in 
Step (K + 1) .1 with 7K = #K. 
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The maximal possible partition size is attained if G has a maximal number of 
M i nodes in every layer i, for 0 < i < m. Since every node in the last layer 
gets deleted immediately after its generation in Step k.5, (29) follows for the case 
when the selection in Step k.2 is done in a Breadth First Search manner in G and a 
worst-case problem is encountered. 

Finally, from Lemma 16 we conclude that {x E P : f (x )  < 7K} C_C_ 7~g = 0, 
i.e. YK solves Problem (18). [] 

REMARKS: 
(a) Following the arguments in the proof of Theorem 17, we see that we are totally 

free in the choice of ik E ISk in Step k.3 of Algorithm 2. For example, one 
can choose a cutting hyperplane Hi~ which generates a minimal number of 

new simplices £ = e (Sk, Hik) = .A4s k (Him) , to avoid an excessive growth 

of partition sets in the current Step k. Note that e can be computed in advance 
based on the knowledge of n+(S), n - (S )  by evaluating the left equation in 
(31). Another possible objective would be to choose a hyperplane which cuts 
off as many infeasible vertices vJ E V (Sk) as possible, in particular, vertices 
satisfying f(vJ) < 7k. Clearly, there are many imaginable combinations of 
these and other selection strategies. However, in any case, in order to prune 
branches of G as soon as possible, it seems to be reasonable to apply the test 
for deletion of simplices described in Section 4.1.4. 

(b) It can be expected that, for a given practical problem, Algorithm 2 terminates 
considerably faster than indicated by the bounds (27), (28). It is even not clear 
wether we can construct any reasonable problem of the form (18) where these 
bounds are attained. In such a problem, 

(1) every hyperplane chosen in Step k.3 must subdivide the vertex set V(Sk) in 
two parts V-(Sk) ,  V+(Sk) of(nearly, i f n  odd) equal size, and V=(Sk) = 
0 for every generated simplex (note at this point, that degeneration in the 
sense of V=(Sk) ~ q) makes the subdivision procedure easier, since the 
number of new partition sets becomes smaller); 

(2) every subdivision Step k.3 must generate a maximal number of simplices 

sk,} with I = IIs l- 1 for 1 < j < e, i.e. every hyperplane 

Hi irredundant for Sk must remain irredundant for all Ski, except Hik; 
(3) no generated simplex S ~ P is deleted in a Step k.5. 

(c) The idea of Algorithm 2 is closely related to the exact simplicial (ES) algorithm 
and variants of it as presented, for example, in Chapter VII, 3 of [HoTu93], 
which is based on an idea due to Ban (cf. also [TaBa85]). Here are the main 
differences: 

(1) The ES-type algorithms perform only one bisection per iteration, so that 
the chosen cutting plane is likely to remain irredundant for the new sim- 
plices for many further subdivisions. It is clear, on the other hand, that this 
strategy might become an advantage if some of the generated partition sets 



86 MICHAELNAST 

can be deleted in an early step, because the growth of I~kl per iteration 
step is bounded by one. 

(2) To prove convergence for the ES-type algorithms, one prescribes a fixed 
selection scheme for the choice of the cutting planes (see [HoTu93]). If, 
after the application of a bisection to a simplex S with cutting plane/-/, 
this cutting plane remains irredundant for an unfathomable descendent S 
of S, then H will be chosen again to subdivide S. Therefore, in the worst 
case, i.e. if one has to apply subdivisions until H is redundant for every 
generated subsimplex of S, the ES method computes as many bisections 
as Algorithm 1 would do, if one applies it to S. It is easily seen that the 
total number of generated and bounded subsimplices in this process adds 
up to 2. ( K -  (S) + K + (S) - 1). In this case, one call of S u b d i v i d e ( . )  
can be much more efficient, since it generates only K -  (S) subsimplices, 
and H is redundant for all of them. 

(3) The so called modified ES algorithms (see [HoTu93]) build partitions 79k 
containing simplices of different dimensions. A simplex S is replaced by a 
face of it, if S contains only boundary points of the feasible set P.  If P is 
full dimensional, then, with arguments similar to those in Lemma 16, it is 
possible to introduce deletion rules as in Section 4.1.4 to overcome this. 

(4) ES-type algorithms are proved to be finite, but no bounds on the number 
of iterations or generated partition sets are given, whereas regarding Algo- 
rithm 2 we have Theorem 17, and, moreover, the choice of cutting planes 
can be based on the precomputable number of new partition sets in every 
step k. Using the arguments introduced in (c), (2), it is now possible to give 
worst case bounds for ES-type algorithms. 

(d) In [HoTu93], an extension of the exact simplicial algorithm to the case of 
unbounded feasible sets is given by the description of a conical variant. It 
should be possible to generalize Algorithm 2 for unbounded feasible sets along 
similar lines. 

(e) If we incorporate our ideas into the well-known pure outer approximation 
schemes (cf., e.g. [HoTu93], [HoPaTh95] or [Be95]), it is easily seen that we 
obtain a convergent algorithm for the case when the feasible set X is compact 
and convex. A simple idea for doing this is to use Algorithm 2 for solving the 
linearly constrained concave subproblems (Pk) arising in the outer approxi- 
mation process. Note that the feasible set of (Pk+l) originates from that of 
its predecessor (Pk) only by adding a single cutting plane, so that Algorithm 
2 can be used to construct a new feasible partition by updating the simplices 
contained in the optimal partition of (Pk), which violate the new inequality. 

(f) Finally, note that if we replace the subdivision process in Step k.3 by the well 
known exhaustive bisection (combined with suitable tests for the deletion of 
infeasible partition sets in case of using the lower bound #1), we are led to 
classical (convergent, but in general infinite) simplicial branch and bound pro- 
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cedures for problem (18) introduced by Horst in [Ho76]. Some of these variants 
will be used in Section 5 for numerical comparisons. 

5. Numerical  Examples 

In view of Proposition 5 (iii), it is immediately clear that the number K - ( S )  of 
new simplices possibly generated by the subdivision procedure introduced in Sec- 
tion 2 will set some natural bounds for numerical applications. In fact, in the worst 
case, the number K -  (S) exponentially grows in the dimension of the problem. On 
the other hand, it is analytically completely unknown how this drawback compares 
to the real world performance of existing convergent branch and bound methods, 
which rely, in the end, on exhaustiveness of the subdivision process used and con- 
tinuity arguments. To give an impression of a possible outcome comparing the new 
method with a convergent one, let us start with two low dimensional examples 
of very regular and simple structure. As mentioned before, we check our method 
(abbreviated as M2 in the following) against the classical one of Horst ([Ho76], 
(M1)), which combines bisection of a longest edge with the bound #2. 

Table II. Results in IR~ and IR a 

Method /~ Acc. e Iter (P1) Mps ( e l )  Iter (P2) Mps (P2) 

MI :  #2 1.E-02 17 2 205 30 

/z2 1.E-06 41 2 325 30 

#2 1.E-10 69 2 441 30 

#2 1.E-14 84 2 534 30 

M2: /~1 1.E-14 3 2 53 19 

/z2 1.E-14 2 1 42 21 

EXAMPLE 18. The first example problem, stated in IR 2, 

m i n { - I l x l l 2  : 1 ~ X a - k X 2  "~ 3, - -1  ~ X l - - X 2  ~ 1 )  (-/91) 

asks us to find a point in a square with maximal Euclidean norm. (P1) has two 
global solutions, given by ~1 := (1, 2) T and ~:2 := (2, 1) T. A starting simplex is 
given by S = {(xl,  x2) >_ 0 : xl  + x2 < 3}. The numerical results are shown in 
the (P1)-columns of Table II. If we apply the simple bound #1 in M2, then the 
method finds an exact (machine precision) solution in 3 iterations, while using #2 
we need 2 iterations. M1 finds an approximate solution after 17 iterations when 
we require an absolute accuracy E set to 1.E-02, i.e., the global lower and upper 
bounds are allowed to differ from each other at most by e. This increases up to 
84 iterations if we prescribe machine precision as in M2. Looking at the generated 
partitions, we see that both M1 and M2 use a maximal number of 2 remaining 
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unfathomable partition sets (Mps) in each iteration. M1 keeps exactly 2 simplices 
Sk,1 and Sk,2 in each iteration step k, with :~/ E Sk,i, i = 1, 2. The procedure 
has to shrink these simplices using bisection until the diameters are small enough 
to compute lower bounds with the prescribed precision. It is impossible for M1 to 
compute exact lower bounds since each Skj contains at least one infeasible vertex 
having a smaller objective function value than f*(P). 

EXAMPLE 19. 
methods to 

A similar behavior can be observed in IR a when applying the 

r a i n { - I I x -  e l l2 : a  < Ax < b} 

where e = (1, 1, 1) T and the feasible set P is given by the following data: 

0 0 0 -3  -3  -3  ! l  
aT ] --1 2 2 5 -1 -1  
A T J = 2 -1 2 -1  5 -1  
b T 2 2 -1  -1  -1 5 

12 12 12 15 15 15 

(P2) 

The polytope P is given by 14 facet defining inequalities, it possesses 24 vertices. 
Problem (P2) has 6 global solutions ~i, which are given by the 6 possible permu- 
tations of the coordinates in o~ := (2, 3, 4) T, with optimal objective function value 
f*  (P) = -14 .  The numerical results are shown in the (P2)-columns of Table 
II. The interpretation is much the same as for (]91). Again, if the iteration counter 
exceeds 200, Horst's method M1 bisects 6 small simplices containing the optimal 
solutions ~i until the prescribed precision e is reached. 

Note at this point, that although the superior method M2 solves the proposed 
2 problems much faster than one could suspect given the worst case bound (27), 
it computes many more vertices than the feasible sets possess. This seems to be a 
general drawback of (simplicial) branch and bound approaches for problem (18). 

A second point worth mentioning is the strong dependence of the efficiency of 
M2 on the selection rule for the new cutting plane in step k.3 of (A2). We tested 
some of the variants sketched in the Remarks to Theorem 17, and found that the 
following heuristics lead to a satisfying overall performance of (A2), with respect 
to our test examples: 

t> Choose a vertex v E arg min f (V (S)). From the set of possible cuts refer- 
enced by Is, choose a cutting plane H which cuts off v in such a way, that 
either n -  (S) or K -  (S) (or both, if possible) are minimized. 

Clearly, because this part of the algorithm seems to be very important from a prac- 
tical point of view, this topic has to be investigated further. 

Finally, it is obvious that (P1) and (/°2) are far from being representative. The 
fact that both examples have multiple optimal solutions is somewhat disadvanta- 
geous for M1 compared to M2, and at least the special structure of the feasible set 
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of (P1) shows favor towards M2. The intent of both examples is to demonstrate 
what can happen and why it happens if the situation is favorable for M2. If differ- 
ent feasible sets and/or objective functions are used, the performance of M1 often 
counterbalances that of M2. This will become apparent in the next section. 

Table III. Objective functions used 

Funct. no. i Functional Form fi (x) Source 

1 -Ix1 + Z7=2 J [BeSa94], [HoTh88] 

2 (X+(~j=13xj)2) ½ _ n . [BeSa94], [HoTh88] 

} n 1-x'[ ( I n ix" ) [BeSa94],[HoTh88] 3 -- ~ j = l j  : -In I +  ~ j = 1 7  : 

4 --3" )-'~=1 x2 + 2  ()--~jn___-: x, xj+t) [BeSa94] 

5 - ()-'~j~=x x : ) .  In (1 + E~=I X2) [BeSa94], [HoTh88] 

5.].  EXPERIMENTAL RESULTS FROM RANDOMLY GENERATED PROBLEMS 

Considering higher dimensional examples than before, we compared M1 and M2 
p i  using randomly created instances ( n , m )  of problem (18)for dimensions 4 < n _< 

10. The construction of the examples was done in a fashion similar to that used 
p i in [BeSa94]: the feasible set Pn,m of ( n , m )  is an n-dimensional polytope given 

by Pn,m := {x C IR n : x > O, B x  < b}, where B C ]R mxn, b C ]R m define 
I < m _< 9 additional inequalities, generated randomly with the method described 
in [HoTh88]. Finally, using the objective functions given in Table III, each problem 
instance i (PrO,m) is defined by 

min { f i  (x ) :  x E Pn,ra} i (P,~,m) 

where 1 < i < 5, 4 < n < 10, 1 _< m <_ 9, yielding a total number of 315 exam- 
ples. Table IV compares the overall performance of M1 and M2 in the following 
way: let T1 (i, m, n ) ,  T2 (i, m, n) be the CPU times needed to solve i (P~,m) using 
M1 and M2, respectively. Then the quotient 

5 Ei=l  rl (i, m, n) 
sm,n := Ei=lS ~r 2 (i, re, n) 

is used as a measure for the relative performance of M2 compared to M1, taken 
over five instances i (P~,m) asking for the minimization of five different objective 



90 MICHAEL NAST 

Table IV. Relative speedup (slowdown) am,,, using (M2) instead of (M1) 

n \ m  1 2 3 4 5 6 7 8 9 

4 4.6 3.4 3.6 2.7 1.3 2.1 4.8 2.1 2.7 

5 23.2 17.9 22.9 18.1 7.2 2.9 1.4 1.3 0.6 

6 198.7 85.0 9.9 18.5 2.1 0.1 0.4 0.04 0.2 

7 1.1 0.9 1.0 172.3 2.4 0.2 0.9 0.4 0.3 

8 1.3 1.6 1.0 0.9 1.0 23.9 9.6 23.7 0.3 

9 1.0 29.5 322.0 270.5 449.8 *45.6 "241.9 *66.0 *87.5 

10 0.9 *8033.9 198 .5  165.6 86.2 0.1 *2.5 *0.2 - -  

functions on a fixed feasible polytope Pn,m of dimension n with up to m+n facets. 
Table IV shows the values of sm,n for the different values of m and n. 
Values marked by a star in Table IV give a lower bound for the true speedup s,~,n, 
since the method M1 failed at least for one objective function in the corresponding 
group of examples, due to exhausted computing resources. The last example is 
a special case; since both methods were unable to compute a solution in at least 
one problem instance, 89,10 can not be given. Both methods used #2 for lower 
bounding. For all examples, we required an absolute accuracy e = 0.1 for the 
final bounds, which turns out to be a strong precision goal for the majority of the 
examples. All computations were done on a Sun Sparcstation 20 using C++. To 
solve the linear programs, we used a code from the NAG Mark 16 FORTRAN 
library. 

Appendix 

A. Proofs 

A.1.  PROOF OF LEMMA 8 

Let Mg := (f be the inverse matrix of MS, with B E lit '~×n, b, d E IW' 

and (f E ]Ft. Then by definition of the inverse matrix 

( ~  b ) ( A  a)  ( E  0 )  (32) 
Mg"Ms= 6 " a T 7  = 0 T 1 ' 

where E denotes the n x n identity matrix. Hence for y E Y, x E X with f (x) -- y 
we see that 

dTy + ~ = dT Ax + a + ~ = (dTA + 5cT)x + (dTa + 5"),) 1 
aTx + 7 cTx  + 7 -- cTx + 7 '  
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so that g : Y --+ IR n with g (y) :=  ~ is a projective transformation permissible dTy+t~ 
for Y. From (32) we conclude that g is nonsingular and that, for all x E X ,  we have 

g o f (X) = (cTx "4- 7) ( B f  (x) + b) = (BA  + bcT)x q- (Ba + 7b) = x 

This yields the invertibility of  f on X with inverse f - 1  = g. [] 

A.2.  PROOF OF LEMMA 9 

k k Let y E P~. Then there exists x E P with x = ~4=1 )q x4' f (x) = Y, Y~i=l ,~i = 1, 
,~4 >__ 0, 1 < i < k ,  and therefore 

k 8 :---- ~-~4=1 )~i( cTx i  "q- 7)  > O. 

Then 

A ( E k = I  )~4x 4) + a ( E k = l  )~4) = )q(e Txi  + 7)  f ( x  i) = y~#4y4 
Y = cT(E/k=I  )~4X 4) -I-7(E/k=1 ,~i) i=1 8 i=1 ' 

where #4 :=  hi ( c T x 4 + 7 ) s - 1  --> 0, 1 < i < k, and k ~ i = 1  #4 = 1, i.e., y .E 

conv (Y).  
k k Now let y E conv ( Y ) ,  i.e., Y = ~4=1 #iY 4 with ~ i = 1  #4 = 1 and #i > _ 0, 1 < _ 

i < k. To show that y E P ' ,  define for 1 < i < k 

li : =  cT  x 4 -t- 7 and ;k4 :=  o~t~i, where a :=  ~ k  j = l  lj " 

k Then, clearly, a > 0, ~-,4=1 ,X4 = 1 and )~4 > 0 f o r l  < i < k. Moreover, for 
k x :=  Y~4=1 A4 x4 E P,  we see that 

• )~ Ax  4 + a ~ #4 Ax  4 + a ~ Ax  i + a 
= L - -  - -  - 2_.,#i I. = y' f ( X ) =  4 k ~/E3k'--1 ~ l J  4=1 °z 4=1 ~ j = l  )~jlj 4=1 

and therefore y C P~. [] 

To show L e m m a  10, we  need the following result: 

L E M M A  20. Let Xa : =  { x l , . . .  , x  k}  C ]R n be a finite set of  affinely dependent 
vectors, and f : IR n --+ IR n be a projective transformation permissible for Xk. 
Then f ( Xk  ) :=  { f ( x l ) , . . . ,  f ( xa ) } is an affinely dependent set of vectors. 

Proof Let ),4 E lit, 1 < i < k, not all equal zero satisfy k ~i=1 )~4 xi = 0 and 
k Y'~4=1 h4 = 0. Then, for f ( x )  = ~ and 14 : =  c T x  4 q- 7 5 ~ 0 : c ~ z+7 

k k k k 
E (,~dd" f (x4) = E )~4 (Ax 4 + a) = A( E )~4 x41 + a( E )~4) = O, 
i=1 4=1 4=1 i=1 
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k k k 
and ~ )kili --~ cT ( ~ )~i xi) + 7(  ~ "~i) = 0, where ,~ili ¢ 0 iff ),i ~ 0. 

i=1 i=1 i=1 
[] 

A.3. PROOF OF LEMMA 10 

Lemma 9 tells us that P '  C_ lit n is the polytope P '  = c o n v  (Y), thus V (P')  C_ 
y = { y l . . . ,  yk} C_ P'. By Lemma 8, f is invertible, and since z i ~ xJ for i ~ j, 
it follows that yi = f (xi) ~ f (zJ) = yJ for i ~ j .  Moreover, again by Lemma 
8, the inverse 9 : P~ --+ P of f given by g (y) = ~a.~u+o is a nonsingular projective 

transformation permissible for Y satisfying dTy + 3 > 0 Vy E Y. Finally, by 
Lemma 9, the image of Y under g is g (Y) = X.  These considerations show that, 
for nonsingular f ,  if the requirements of Lemma 9 are satisfied by P, X and f ,  they 
are also satisfied for p i ,  y and f - l ,  respectively. Therefore, it is sufficient to show 
the respective first assertions of (a), (b) and (c), since application of analogous 
reasonings to the symmetric situation for P~, Y and f - 1  will give the second. 

(a) To show that V (P) = X ~ V (P') = Y,  assume V (P) = X but V (P ')  
Y. For 1 < j < k, define Yj := Y \ { f  (x j) } and Xj  := X \ {xJ}. Since 
V (P~) C_ Y, we must have V (p1) C_ Y/for at least one i E { 1 , . . . ,  k}. Let 
g : p l  __+ p be the inverse of f on pi .  Applying Lemma 9 to P~ and g, we see 
from V (P ' )  C_ Y that 

P "  = 9 (P')  = c o n v  (9 (Y)) = c o n v  (X) = P ,  
whereas from V (P ' )  C_ I~ one concludes, again by Lemma 9, that 

p , ,  = g (p,)  = c o n v  (g (I~)) = conv (Xi) , 
which leads to the contradiction P = c o n v  (Xi). 

(b) Now let Sd = [v°, . .  •, v d] C P be a d-simplex. Then cTv i + 7 > 0, 0 < i < 
d, since cTx + 7 > 0 Vx E P = conv (X). The restriction f : Sd --+ f (Sd) = 
S~ of f to Sd is nonsingular, and therefore 

S' d = [ f (v°) , . . . , f (va)]  with V(S~)  = { f ( v ° ) , . . . , f ( v a ) } ,  
by (a) applied to Sd and f .  Assume that the set V (S~) is affinely dependent. 
Then, by Lemma 20, the image of V (S~) under the (projective) inverse .q of f 
is an affinely dependent set, which contradicts the assumption that d im Sd = d. 

(c) To prove the first assertion in (c), note first that, by (b), every member S ~ of ~D I 
is an n-simplex. We have to show that (i) p i  = 791 and (ii) that two simplices 
in 791 do not share any interior points. Regarding (i), the inclusion ~D I C P~ 
is obvious. For every y E pI ,  the corresponding x E P with f ( x )  = y lies 
in some n-simplex S E 7). By Lemma 9, we know that y E f (S) E 7Y, 
so that p i  C ~D I. To show (ii), assume that, for S~ and £5 in 7) I we have 
y E intS~ n intSj. Thus one can find e > 0 so that the open ball Be (y) satisfies 
Be (y) C S~fqS~., and therefore f - 1  (Be (y)) is an open set contained in &ASj .  
Since 7) is a simplicial partition of P ,  we conclude that i = j.  [] 
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